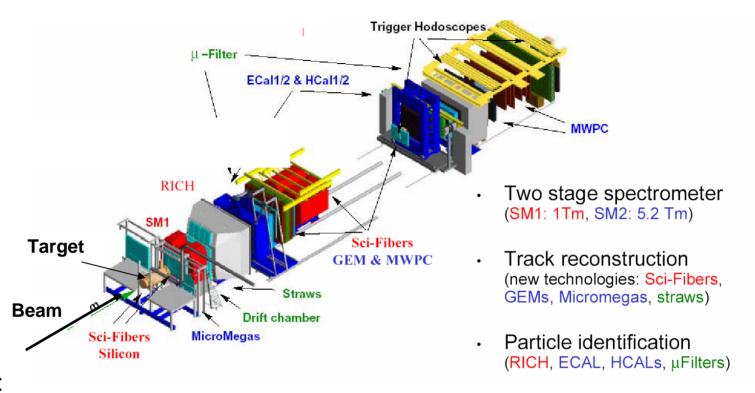
COMPASS experiment status and results

On behalf of COMPASS collaboration

Katarzyna Kowalik LBNL

Outline


This talk is focused on muon program results from 2002/2003:

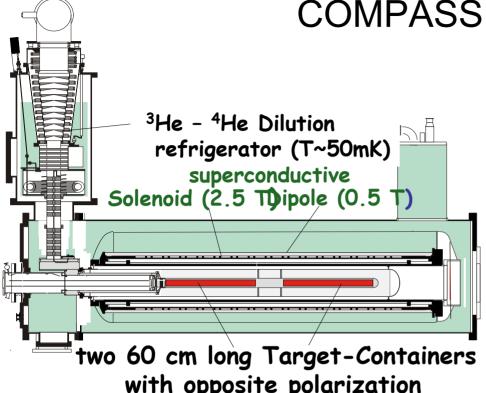
- Collins and Siver asymmetries
- Inclusive asymmetry A₁d
- Gluon polarization
 - Open charm production
 - Production of high-pt hadrons

Status of hadron program

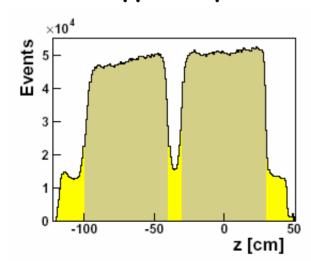
→ in 2004 first data was taken with hadron beam

COMPASS spectrometer

Beam:

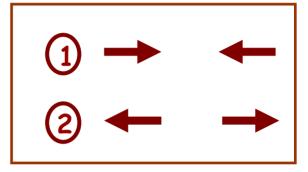

160 GeV μ⁺, polarization Pμ~75%

Target:

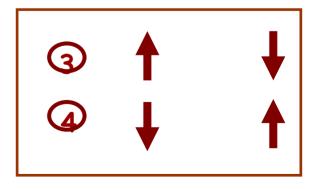

⁶LiD target, max. polarization P_T~57% longitudinal and transverse polarization

	2002	2003	2004
Days	70	83	106
Integrated Luminosity (fb-1)	1	1.2	~2.4

COMPASS target

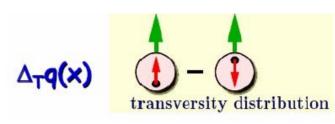


with opposite polarization



Longitudinal configuration

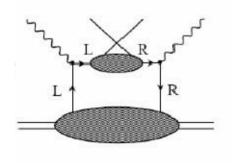
Reversed every 8 hours


Transverse configuration Reversed once a week

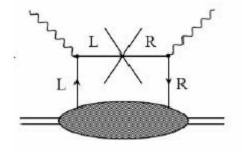
Transversity distribution


Idea:

transverse nucleon polarization carried by quark



In analogy to longitudinal configuration:



QCD preserves helicity

Inclusive DIS not sensitive

h₁(x) requires helicity flip

Semi-inclusive reactions (SIDIS)

$$\Delta_T q(x) \otimes FF$$

Transverse spin effects

Sivers effect

Azimuthal asymmetry caused by intrinsic k_T dependence of quark distribution in the transversely polarized nucleon

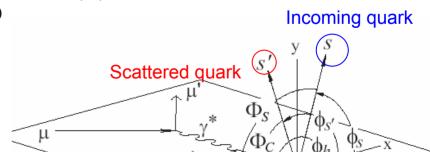
$$A_{\mathit{Siv}}^{\sin\Phi_{\mathit{Siv}}} = \frac{\displaystyle\sum_{q} e_{q}^{2} \cdot \Delta_{0}^{\mathit{T}} q \cdot D_{q}^{\mathit{h}}}{\displaystyle\sum_{q} e_{q}^{2} \cdot q \cdot D_{q}^{\mathit{h}}}$$

Collins effect

Azimuthal asymmetry in quark fragmentation

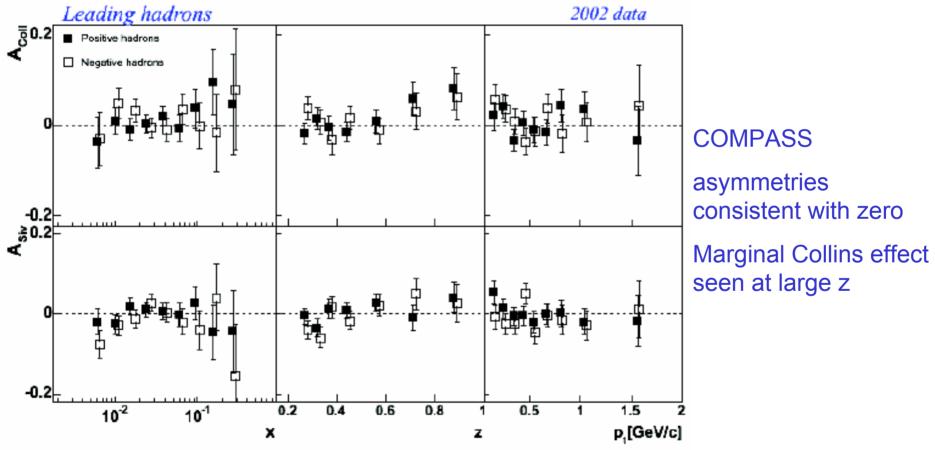
$$A_{Coll}^{\sin\Phi_{Coll}} = \frac{\displaystyle\sum_{q} e_{q}^{2} \cdot \Delta_{T} q \cdot \Delta_{T}^{0} D_{q}^{h}}{\displaystyle\sum_{q} e_{q}^{2} \cdot q \cdot D_{q}^{h}}$$

Measured single spin asymmetry:


$$A^{m} = \frac{N^{\uparrow}(\Phi)_{Coll(Siv)} - R \cdot N^{\downarrow}(\Phi)_{Coll(Siv)}}{N^{\uparrow}(\Phi)_{Coll(Siv)} + R \cdot N^{\downarrow}(\Phi)_{Coll(Siv)}} \propto A_{Coll(Siv)} \sin(\Phi)_{Coll(Siv)}$$

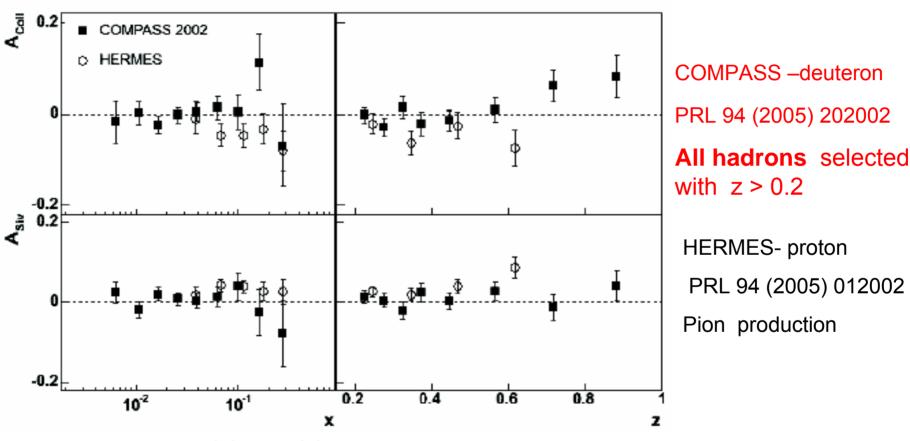
with normalization factor

$$R = \frac{N_{h,tot}^{\uparrow}}{N_{h,tot}^{\downarrow}}$$


$$\Phi_{\text{Coll}} = \Phi_{\text{h}} - \Phi_{\text{s}}$$

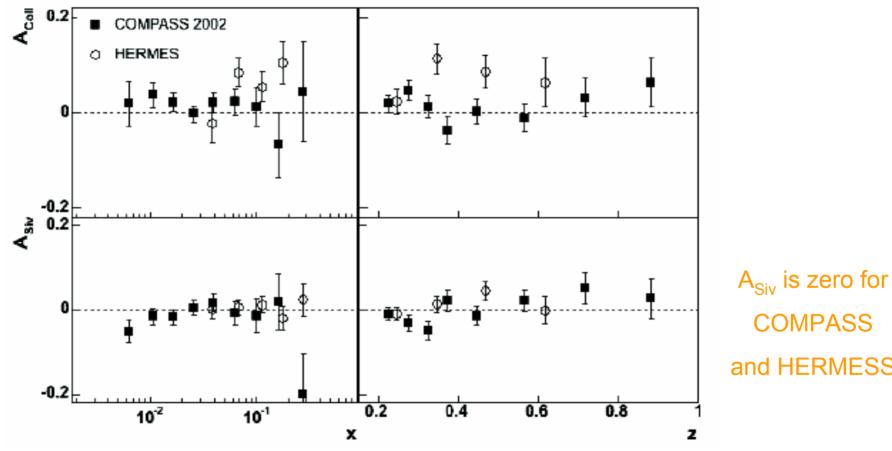
$$\Phi_{Siv} = \Phi_{h} - \Phi_{s}$$

A_{Coll} and A_{Siv} for leading hadrons


- Single spin asymmetries from 2002 data 20% of total data sample
- Leading hadrons defined by z > 0.25

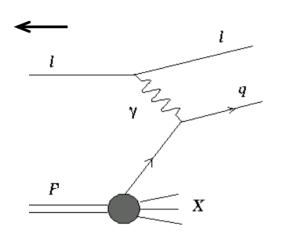
Analysis also done for sample with all hadrons (factor ~1.5 more hadrons)

results consistent with leading hadron analysis


A_{Coll} and A_{Siv} for positive hadrons

Measurement at COMPASS:

- extend the kinematic region to lower x and higher z
- no effect except at large z


A_{Coll} and A_{Siv} for negative hadrons

- and HERMESS
- COMPASS asymmetries consistent with zero for positive and negative hadrons
- deuteron target vs HERMES proton target → possible effect cancellation

Measurement with longitudinally polarized target

Lepton

Measured asymmetry

$$A^{\mu d} = \frac{\Delta \sigma}{2\sigma} = \frac{\sigma^{\longleftrightarrow} - \sigma^{\longleftrightarrow}}{\sigma^{\longleftrightarrow} + \sigma^{\longleftrightarrow}}$$

$$\mathsf{A}_{\scriptscriptstyle 1}^{\mathsf{yd}} \cong \frac{\mathsf{A}^{\mathsf{\mu}\mathsf{d}}}{D}$$

Nucleon

 \leftarrow

 \Rightarrow

Spin-dependent structure function:

$$g_1 = \frac{F_2}{2x(1+R)} A_1^{\gamma d}$$

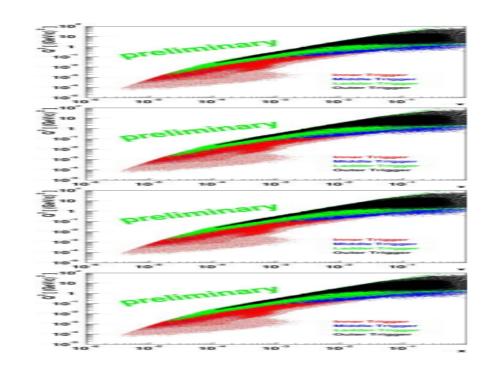
where:

 F_2 spin-independent structure function and $R = \frac{\sigma_L}{\sigma_T}$

Kinematic range

Data sample:

2002+2003 data


(71% 2003 year)

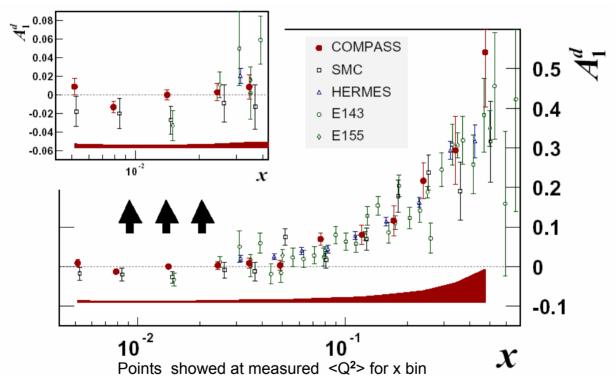
Cuts:

 $Q^2 > 1 \text{ GeV}^2$

0.1 < y < 0.9

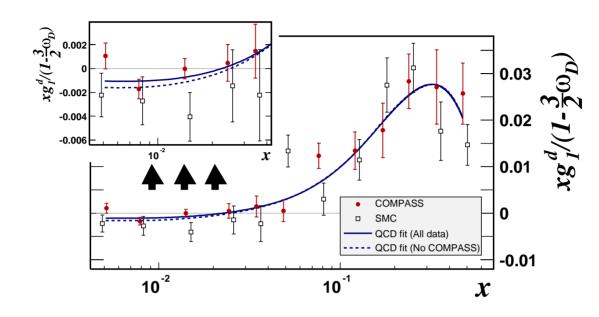
After cuts: 34M DIS events

Excellent for non-perturbative & perturbative physics:


- small x
- very small $Q^2 \rightarrow Q^2 > 100 \text{ GeV}^2$

Result on A₁d

Published:


PLB 612 (2005) 154

$$A_{1} = \frac{1}{2\langle P_{t}P_{b}fD\rangle} \left(\frac{N_{u} - N_{d}}{N_{u} + N_{d}} - \frac{N_{u}' - N_{d}'}{N_{u}' + N_{d}'} \right)$$

- \rightarrow most precise in the region x < 0.03 (statistical precision improved by factor 2.5)
- $\rightarrow A_1^d$ less negative in this region

Impact of COMPASS $g_1(x)$ on QCD fit

First moment of g1(x) evaluated at $Q^2 = 4$ GeV²:

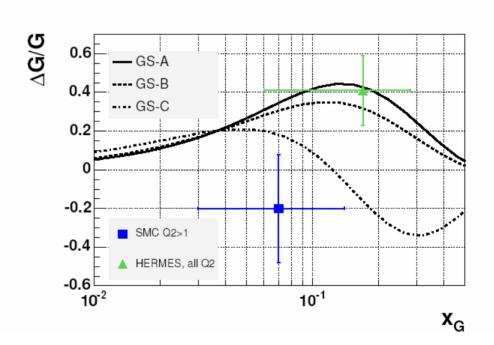
$$\int_{0}^{1} \Delta \Sigma(x) dx = \begin{bmatrix} 0.237 + 0.024 \\ -0.029 \end{bmatrix}$$
$$= 0.202 + 0.042 \\ -0.077$$

points showed at measured Q2

including COMPASS data

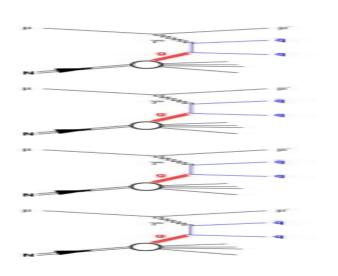
without COMPASS data

- \rightarrow precision on $\Delta\Sigma$ improved by a factor 2
- $ightarrow \Delta G$ remains unchanged


Access to gluon polarization $\Delta G/G$

DIS inclusive data sensitivity to ΔG through Q² dependence of $g_1(x,Q^2)$

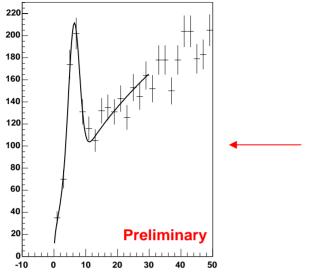
 \rightarrow Direct measurement of $\triangle G$ important


HERMES, A.Airapetian et al., Phys.Rev.Lett.84, 2584 (2000).

SMC, B.Adeva et al., Phys.Rev.D 70, 0102002 (2004)

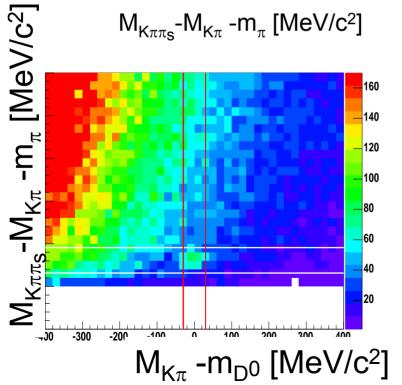
How to measure ∆G/G at COMPASS?

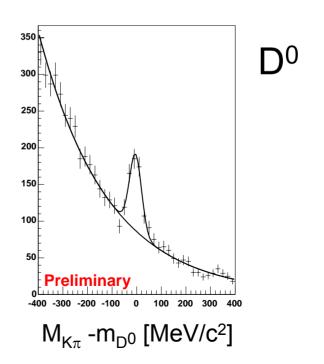
Photon-Gluon Fusion process (PGF)


- q= u,d,s pairs of hadrons with large p_T
 - \rightarrow Q²>1 GeV²
 - → Q²<1 GeV² (large statistics for Q²<1GeV²)
- q = c charmed meson production

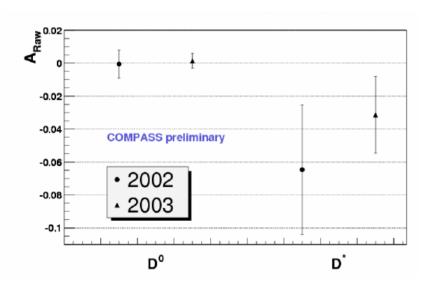
The charm at COMPASS:

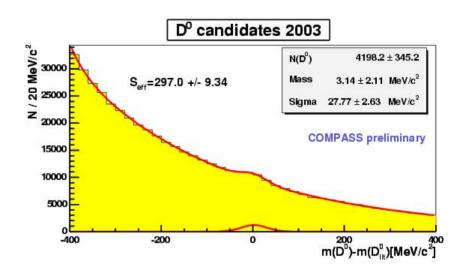
$$D^0 \rightarrow K\pi$$

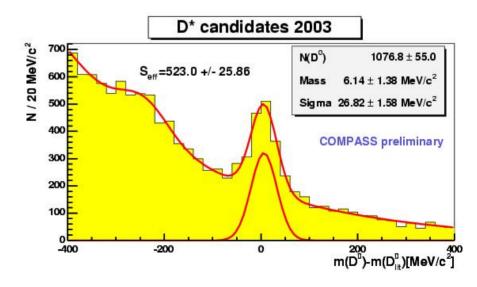

$$D^* \rightarrow (K\pi)\pi$$


Plots for 2002 data

Tagging D* by D⁰

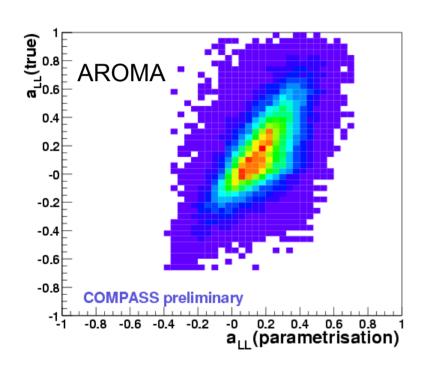

D* signal after cut on m(D⁰) 60 MeV around D⁰ peak

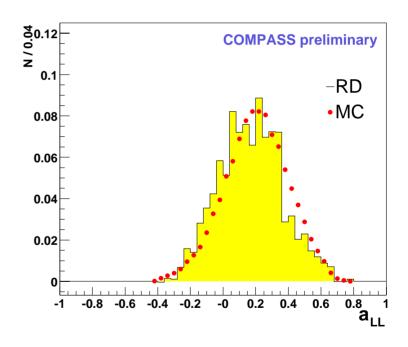




Asymmetry for charm production

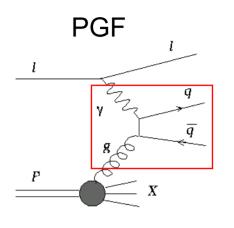
$$A_{Raw}^{m} = \frac{N_{m}^{\uparrow\downarrow} - N_{m}^{\uparrow\uparrow}}{N_{m}^{\uparrow\downarrow} + N_{m}^{\uparrow\uparrow}} = \frac{S}{S + B} \langle P_{\mu} P_{T} f a_{LL} \rangle \frac{\Delta G}{G}$$

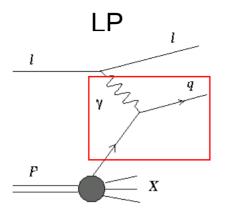


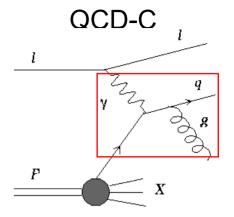


For $\Delta G/G$ a₁₁ for PGF is needed

Partonic asymmetry for PGF


- 1. parameterised in AROMA a_{LL} (y,z_D,p_T)
- 2. calculated from data using parameterization from MC simulation





△G/G from open charm will be shown soon from 2002/2003 data

Δ G/G from high-pt hadron pairs Q²>1GeV²

$$\frac{\mathbf{A}_{\parallel}^{\text{IN}\rightarrow\text{lhhX}}}{D} = \frac{\Delta \mathbf{G}}{\mathbf{G}} \langle \frac{a_{LL}^{\hat{P}GF}}{D} \rangle \mathbf{R}^{\text{PGF}} + \frac{\Delta \mathbf{q}}{\mathbf{q}} \left(\langle \frac{\mathbf{a}_{LL}^{\hat{L}P}}{\mathbf{D}} \rangle \mathbf{R}^{\text{LP}} + \langle \frac{\mathbf{a}_{LL}^{\hat{Q}CDC}}{D} \rangle \mathbf{R}^{\text{QCD-C}} \right)$$

 $\frac{\Delta q}{a} \propto A_{\rm i}$ taken from inclusive DIS measurements

 $\stackrel{\wedge}{\langle a
angle}_{\scriptscriptstyle LL}$

the asymmetry for hard sub-process

R the frac

the fraction of events

Provided by MonteCarlo

Result on high-p_⊤ asymmetry Q²>1 GeV²

Data sample: 2002+2003 data

Kinematic cuts:

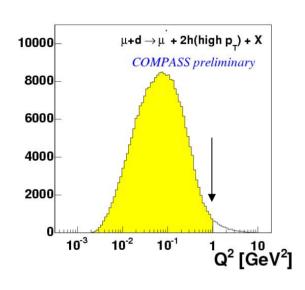
- Q² > 1GeV² ~ 10% data
- 0.4 < y < 0.9
- x < 0.05

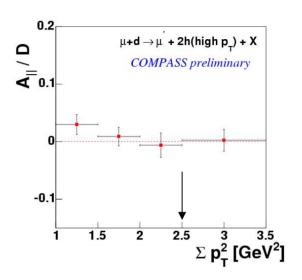
Selection for both hadrons:

- $x_{F}>1$ and z>0.1
- $p_{T} > 0.7 \text{ GeV}$
- $p_{T1}^2 + p_{T2}^2 > 2.5 \text{ GeV}^2$

$$\frac{A_{\parallel}}{D} = -0.015 \pm 0.080 \text{(stat.)} \pm 0.013 \text{(sys.)}$$

Using $R_{PGF} = 0.34 \pm 0.07$ (sys.) from LEPTO:

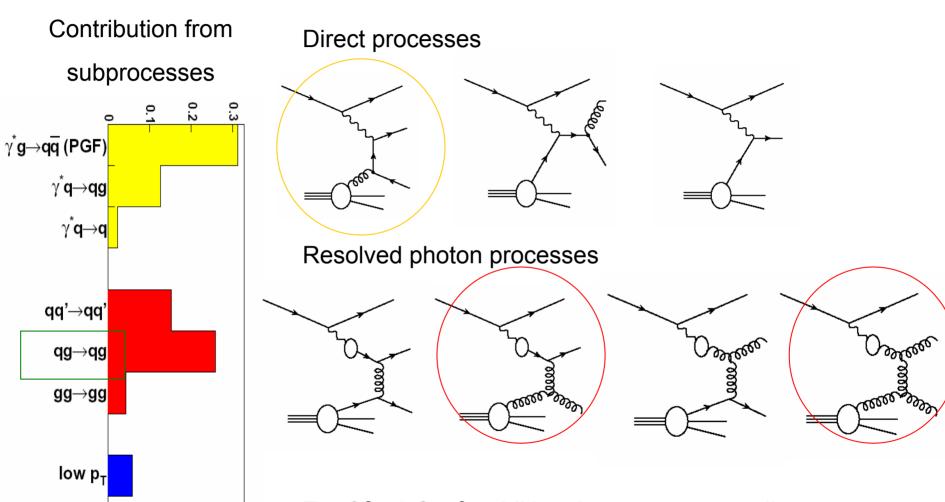

Systematic error R_{PGF} accounts for:


- \rightarrow Sensitivity to $p_{T1}^2 + p_{T2}^2$ cut
- → Default and modified set of fragmentation parameters

$$\frac{\Delta G}{G} = 0.06 \pm 0.31 \text{(stat.)} \pm 0.06 \text{(sys.)} \text{ at } < x_g >= 0.13 \pm 0.08$$

Pairs of high-pt hadrons for Q²<1GeV²

Large data sample for $Q^2 < 1 \text{ GeV}^2$


Combined analysis for 2002+2003:

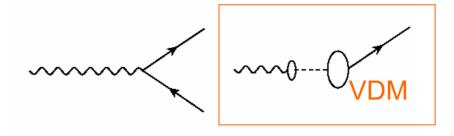
$$\frac{A_{\parallel}}{D}$$
 = 0.002 ± 0.019(stat.) ± 0.003(sys.)

with D=<0.64>

Determination of Δ G/G from measured asymmetry based on PYTHIA simulations

Pythia simulations for Q²< 1GeV²

For Q^2 < 1 Gev² additional processes contribute: resolved photon processes and low p_T scattering

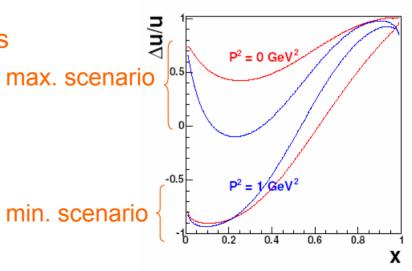

Asymmetry calculation for low Q²

$$\frac{A_{\parallel}}{D} = R_{pgf} \left\langle \frac{\hat{a}_{pgf}}{D} \right\rangle \left(\frac{\Delta G}{G} \right)^{d} + R_{qcdc} \left\langle \frac{\hat{a}_{qcdc}}{D} \right\rangle \left(\frac{\Delta q}{q} \right)^{d} + R_{lodis} \left\langle \frac{\hat{a}_{lodis}}{D} \right\rangle \left(\frac{\Delta q}{q} \right)^{d} + R_{qq'} \left\langle \hat{a}_{qq'} \right\rangle \left(\frac{\Delta q}{q} \right)^{d} \left(\frac{\Delta q'}{q'} \right)^{\gamma} + \dots + Low-pT$$

$$qq'$$

- LO DIS and low p_⊤ processes were neglected
- uncertainty due to spin content of resolved photons

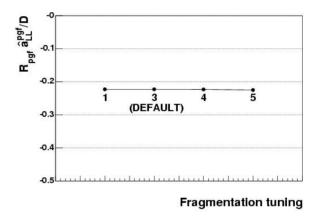
Quark polarization in the photon

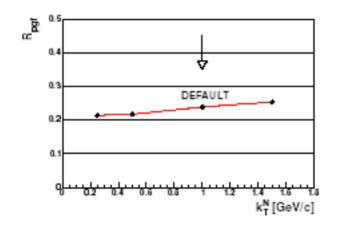

$$\Delta q^{\gamma} = \Delta q_{qar{q}}^{\gamma} + \Delta q_{VMD}^{\gamma}$$

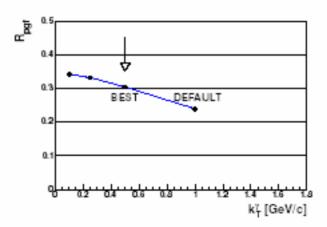
$$\rightarrow \Delta q_{q\bar{q}}^{\gamma}: \mathsf{QED} + \mathsf{QCD}$$

→ for VDM use min. and max. scenarios

$$-q_{VMD}^{\gamma} \leq \Delta q_{VMD}^{\gamma} \leq q_{VMD}^{\gamma}$$

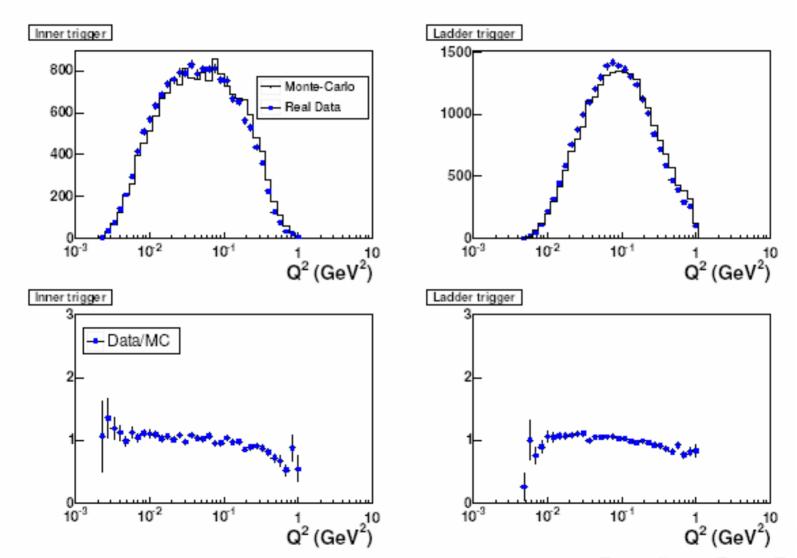

to estimate the contribution of VDM for the Δ G/G evaluation

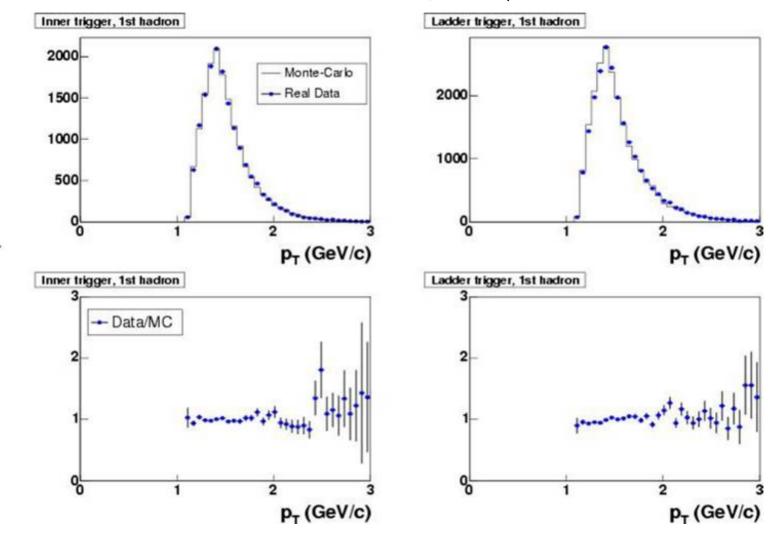



(Glück, Reya, Sieg)

Monte Carlo systematic error

- Accounts for NLO effect:
 - renormalization/factorization scale dependence
 - parton showers (on/off)
- Hadron p_T description in MC
 - Parton fragmentation
 - k_T of partons in nucleon and photon




Data and Monte Carlo

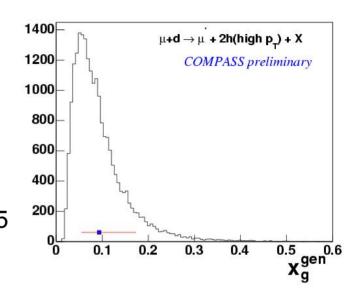
Kinematic variables


Data and Monte Carlo

hadron with highest p_T

Data and Monte Carlo

second selected hadron

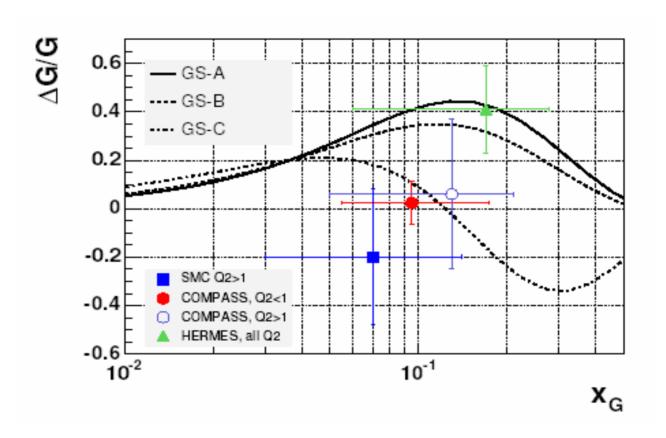


△G/G from high-pt hadron pairs for low Q²

For 2002+ 2003 data:

$$\frac{\Delta G}{G} = 0.024 \pm 0.089(stat.) \pm 0.057(syst.).$$

at
$$< x_g > = 0.095$$



obtained by averaging results for minimum and maximum scenario in VDM:

$$\left(\frac{\Delta G}{G}\right)_{min} = 0.016 \pm 0.068(stat) \pm 0.011(exp.syst) \pm 0.018(MC.syst)$$

$$\left(\frac{\Delta G}{G}\right) = 0.031 \pm 0.089(stat) \pm 0.014(exp.syst) \pm 0.052(MC.syst)$$

Results or high-pt hadrons pairs

- Both COMPASS results consistent with zero
- the most precise measurement of Δ G/G for low Q²

Summary

→ COMPASS run 2002-04 brings first physics results :

PLB 612 (2005) 154: "Measurement of the spin structure function of the deuteron in DIS region"

PRL 94 (2005) 202002: "First measurement of the transverse spin asymmetries of the

deuteron in semi-inclusive deep inelastic scattering"

- \rightarrow Results on \triangle G/G data 2002/2003:
- results for D⁰ analysis will be presented on the summer conferences
- from high-pT $Q^2 < 1 GeV^2$ $\Delta G/G = 0.02 \pm 0.09 (stat.) \pm 0.06 (sys.) x_G = 0.095$
- from high-pT $(Q^2>1 \text{ GeV}^2)$ $\Delta G/G=0.06\pm0.31(\text{stat.})\pm0.06(\text{sys.}) x_G=0.13$
- \rightarrow Expected precision on Δ G/G data 2002-2004
 - from high-p_T ($Q2<1GeV^2$) $\sigma(\Delta G/G) \sim 0.05$
 - from high-p_T $(Q^2>1 \ GeV^2)$ $\sigma(\Delta G/G) \sim 0.16$
 - open charm $\sigma(\Delta G/G) \sim 0.24$
- → COMPASS will resume data taking 2006
- → continue data taking ≥ 2010 with aim to study GPDS with DVCS and exclusive meson production on hydrogen target (+recoil detector)